Scaling Your Application
Tips and tricks for scaling your MCP Server usage
Scaling Your Application
Learn how to scale your MCP Server integrations to handle high traffic and complex workloads.
Performance Optimization
Caching
Implement caching to reduce API calls:
import { MCPClient } from '@mcpserver/sdk';
import Redis from 'ioredis';
const redis = new Redis(process.env.REDIS_URL);
const client = new MCPClient({
apiKey: process.env.MCP_API_KEY,
cache: {
enabled: true,
adapter: redis,
ttl: 3600, // 1 hour
},
});
Connection Pooling
Use connection pooling for database queries:
await client.databases.connect({
type: 'postgresql',
connection: {
host: process.env.DB_HOST,
database: process.env.DB_NAME,
user: process.env.DB_USER,
password: process.env.DB_PASSWORD,
},
pool: {
min: 2,
max: 10,
},
});
Batch Operations
Process multiple operations in batches:
const results = await client.batch([
{ tool: 'database-query', params: { sql: 'SELECT * FROM users' } },
{ tool: 'api-call', params: { endpoint: 'get-orders' } },
{ tool: 'file-read', params: { path: '/data/config.json' } },
]);
Load Balancing
Horizontal Scaling
Deploy multiple instances of your application:
docker-compose.yml
version: '3.8'
services:
app:
image: my-app:latest
deploy:
replicas: 3
environment:
- MCP_API_KEY=${MCP_API_KEY}
Auto-Scaling
Configure auto-scaling based on metrics:
kubernetes deployment
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: mcp-app
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: mcp-app
minReplicas: 2
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
Monitoring
Metrics Collection
Track key performance metrics:
const client = new MCPClient({
apiKey: process.env.MCP_API_KEY,
monitoring: {
enabled: true,
metrics: ['latency', 'throughput', 'errors'],
reporter: 'prometheus',
},
});
Alerting
Set up alerts for critical issues:
await client.monitoring.createAlert({
name: 'high-error-rate',
condition: 'error_rate > 0.05',
notification: {
type: 'email',
recipients: ['ops@example.com'],
},
});
Error Handling
Retry Logic
Implement exponential backoff:
async function executeWithRetry(
fn: () => Promise,
maxRetries = 3
) {
for (let i = 0; i < maxRetries; i++) {
try {
return await fn();
} catch (error) {
if (i === maxRetries - 1) throw error;
const delay = Math.pow(2, i) * 1000;
await sleep(delay);
}
}
}
Circuit Breaker
Prevent cascading failures:
import CircuitBreaker from 'opossum';
const options = {
timeout: 3000,
errorThresholdPercentage: 50,
resetTimeout: 30000,
};
const breaker = new CircuitBreaker(
async () => client.tools.execute({ tool: 'api-call' }),
options
);
Cost Optimization
Request Batching
Reduce API calls by batching requests:
// Instead of multiple single requests
for (const id of ids) {
await client.databases.query({ sql: SELECT * FROM users WHERE id = ${id} });
}
// Use a single batched request
await client.databases.query({
sql: SELECT * FROM users WHERE id IN (${ids.join(',')})
});
Compression
Enable compression for large payloads:
const client = new MCPClient({
apiKey: process.env.MCP_API_KEY,
compression: {
enabled: true,
algorithm: 'gzip',
},
});
Best Practices
1. Use caching for frequently accessed data
2. Implement health checks for all services
3. Monitor error rates and set up alerts
4. Use connection pooling for databases
5. Enable request compression for large payloads
6. Implement circuit breakers to prevent cascading failures
7. Use batch operations when possible
8. Set appropriate timeouts for all operations